

QTI Cryptographic Module on Crypto 5 Core

FIPS 140-2 Non-Proprietary Security Policy

Version: 2.3

2015-07-29

Prepared for:

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

Prepared by:

atsec information security Corp.
9130 Jollyville Road, Suite 260

Austin, TX 78759

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 2 of 33

Table of Contents

Copyrights and Trademarks .. 3

1. Introduction ... 4

1.1. Purpose of the Security Policy .. 4

2. Cryptographic Module Specification .. 5

2.1. Module description .. 5

2.1.1. Hardware description ... 6

2.1.2. Software description ... 6

2.1.3. Module Validation Level .. 7

2.2. Description of Approved modes ... 8

2.3. Cryptographic Module Boundary ... 9

2.3.1. Hardware Block Diagram .. 9

3. Cryptographic Module Ports and Interfaces .. 12

4. Roles, Services and Authentication .. 13

4.1. Roles ... 13

4.2. Services ... 13

5. Physical Security .. 17

5.1. Type .. 17

6. Operational Environment .. 18

6.1. Applicability ... 18

6.2. Debugger .. 18

7. Cryptographic Key Management .. 19

7.1. Random Number Generation .. 19

7.2. Key/CSP Generation Management .. 19

8. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
 ... 21

9. Powerup Tests .. 22

9.1. Self-tests ... 23

9.2. Cryptographic algorithm tests (known answer tests) ... 23

9.3. Integrity Test Summary .. 24

9.4. Conditional Tests ... 25

10. Design Assurance .. 26

10.1. Configuration Management .. 26

10.1.1. Software .. 26

10.1.2. Hardware .. 26

10.2. Delivery and Operation ... 26

10.3. Guidance .. 26

10.3.1. Crypto Officer Guidance ... 26

11. User Guidance ... 28

11.1. Application Programming Interfaces ... 28

11.2. User Space APIs ... 28

11.3. Kernel Space APIs ... 29

11.3.1. Block Cipher Algorithms ... 29

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 3 of 33

11.3.2. Hash/HMAC Algorithms ... 30

11.3.3. Status ... 30

12. Mitigation of Other Attacks... 32

13. Terms and Abbreviations .. 33

Copyrights and Trademarks

 Copyright ©2015 Qualcomm Technologies, Inc. This document may be reproduced only in its original entirety
without any revision.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 4 of 33

1. Introduction

This document is a FIPS 140-2 Security Policy for the QTI Cryptographic Module on Crypto 5 Core.
It contains a specification of the rules under which the module must operate and describes how
this module meets the requirements as specified in Federal Information Processing Standards
Publication 140-2 (FIPS PUB 140-2) for a Security Level 1 module. It is intended for the FIPS 140-2
testing lab, Cryptographic Module Validation Program (CMVP), developers working on the release,
administrators of the cryptographic module and users of the cryptographic module.

For more information about the FIPS 140-2 standard and validation program, refer to the NIST
website at http://csrc.nist.gov/groups/STM/cmvp/index.html.

In this document, the terms “QTI Cryptographic Module on Crypto 5 Core”, “cryptographic
module”, “QTI Cryptographic Module” or “the module” are used interchangeably to refer to the QTI
Cryptographic Module on Crypto 5 Core.

1.1.Purpose of the Security Policy

There are three major reasons that a security policy is required

 It is required for FIPS 140-2 validation.
 It allows individuals and organizations to determine whether the implemented

cryptographic module satisfies the stated security policy.
 It allows individuals and organizations to determine whether the described capabilities, the

level of protection, and access rights provided by the cryptographic module meet their
security requirements.

http://csrc.nist.gov/groups/STM/cmvp/index.html

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 5 of 33

2. Cryptographic Module Specification

2.1.Module description

The Cryptographic Module (CM) is a multi-chip standalone software-hybrid module. The
cryptographic services provided by the module are:

 Data encryption / decryption utilizing symmetric ciphers, i.e.Triple-DES, and AES
algorithms.

 Random number generation based on a SP 800-90A CTR DRBG with a 128-bit AES
derivation function.

 Computation of hash values, i.e. SHA-1, SHA-256.

 Message authentication utilizing HMAC-SHA1, HMAC-SHA256, AES CMAC, hashing
algorithms.

 Concurrent operations of hashing and ciphering using AES CCM.

Table 2-1: Summary of FIPS and non FIPS algorithm in CM

FIPS Compliant Implemented Algorithms
Kernel Invokes As
(.cra_driver_name)

AES-128 CBC, AES-256 CBC encryption, decryption qcrypto-cbc-aes
AES-128 ECB, AES-256 ECB encryption, decryption qcrypto-ecb-aes
AES-128 CTR, AES-256 CTR encryption, decryption qcrypto-ctr-aes

AES-128 CCM, AES-256 CCM
1

encryption, decryption (with
message authentication code)

qcrypto-ccm-aes

AES-128 XTS, AES-256 XTS
encryption, decryption (with
message authentication code)

qcrypto-xts-aes

Triple-DES CBC encryption, decryption qcrypto-cbc-3des
Triple-DES ECB encryption, decryption qcrypto-ecb-3des
SHA-1 Hashing qcrypto-sha1
SHA256 Hashing qcrypto-sha256
HMAC-SHA-1 message authentication code qcrypto-hamc-sha1
HMAC-SHA-256 message authentication code qcrypto-hamc-sha256
AES-CMAC

2
 message authentication code n/a

DRBG random number generation n/a

Non-FIPS Compliant Implemented Algorithms
Kernel Invokes As
(.cra_driver_name)

DES CBC encryption, decryption qcrypto-cbc-des
DES ECB encryption, decryption qcrypto-ecb-des

AEAD-SHA-1 AES CBC
1

encryption, decryption (with
message authentication code)

qcrypto-aead-hmac-sha1-cbc-
aes

AEAD-SHA-1 AES CTR
1

encryption, decryption (with
message authentication code)

qcrypto-aead-hmac-sha1-ctr-
aes

AEAD-SHA-1 DES CBC
1

encryption, decryption (with
message authentication code)

qcrypto-aead-hmac-sha1-cbc-
des

1
 Only available in the kernel interface.

2
 Only available in the user interface.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 6 of 33

AEAD-SHA-1 Triple-DES CBC
1

encryption, decryption (with
message authentication code)

qcrypto-aead-hmac-sha1-cbc-
Triple-DES

Kasumi
encryption, decryption (with
message authentication code)

n/a

snow-3g encryption, decryption n/a
HW RNG Random number generation n/a

1. Crypto 5 hardware also provides Over The Air (OTA) f8/f9 algorithms as defined by the
3GPP forum (non-FIPS compliance).

2. Caveat: AES counter mode uses a 128 bit counter. The counter will roll over after 2^128
blocks of encrypted data.

2.1.1.Hardware description

The hardware portion of the cryptographic module is the Crypto 5 Core v5.3.0, which resides in
Snapdragon 810 processors (https://www.qualcomm.com/products/snapdragon/processors/810).
The QTI Crypto 5 Core v5.3.0 provides a series of algorithms (as listed in Table 2-1) implemented
in the device hardware.

2.1.2.Software description

The software portion of the cryptographic module consists of the QTI crypto engine (qce50) driver
V5.f2-64 that provides common services for accessing the hardware Crypto 5 Core v5.3.0 through
the following three clients:

 qcrypto driver (module provided for accessing CM by kernel space apps)

 qcedev driver (module provided for accessing CM by user space apps)

 qdrbg provides random numbers to user space apps

The qcedev, qcrypto and qceXX executables are contained within the qcrypto_module.ko kernel
module and the qdrbg executable is contained within the qdrbg_module.ko kernel module.

All actual cryptographic functions, with the exception of the DRBG, are implemented within the
hardware.

Figure 1: Cryptographic modules depicting the main driver modules, qcrypto, qce50, qcedev, and
qdrbg containing services to access the QTI Crypto 5 hardware

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 7 of 33

The qceXX software driver is independent of the platform. The qceXX (where XX is 50 for the
current major version) driver provides the common services for hardware crypto access to the two
drivers listed above. The qdrbg module implements an SP 800-90A compliant DRBG obtaining its
seed from the Crypto 5 hardware.

The software application (user space), qfintverify, provides integrity checking for itself and the
cryptographic software drivers.

2.1.3.Module Validation Level

The module is intended to meet requirements of FIPS 140-2 security level 1 overall. The following
table shows the security level claimed for each of the eleven sections that comprise the validation:

Table 2-2: Security Levels

FIPS 140-2 Sections Security Level

N/A 1 2 3 4

Cryptographic Module Specification ✔

Cryptographic Module Ports and Interfaces ✔

Roles, Services and Authentication ✔

Finite State Model ✔

Physical Security ✔

Operational Environment ✔

Cryptographic Key Management ✔

EMI/EMC ✔

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 8 of 33

FIPS 140-2 Sections Security Level

N/A 1 2 3 4

Self Tests ✔

Design Assurance ✔

Mitigation of Other Attacks ✔

The QTI Cryptographic Module is classified as a multi-chip standalone hybrid module for FIPS 140-2
purposes. The logical cryptographic boundary for the module includes the CM software backed by
hardware cryptography to support hardware-based cryptographic algorithms.

Table 2-3 describes the platform where the cryptographic module has been tested:

Table 2-3: Tested Platforms

Module Name Hardware
Version/Test

Platform

Software
Version

O/S (Android) Version

QTI Cryptographic Module
on Crypto 5 Core V5.3.0

Qualcomm Snapdragon
810 processor

5.f2-64 Android: 5.0

Table 2-4 describes the software that comprises the cryptographic module. Note that the qcedev,
qcrypto and qceXX executables are contained within the qcrypto_module.ko kernel module and
the qdrbg executable is contained within the qdrbg_module.ko kernel module.

Table 2-4: Tested Software

Software Change ID in GIT Version Control System Description

qcrypto_module.ko

Id590f0e8bdbfba943595418249a35bac97513864

Allows access to the CM
from both user mode (via
/dev/qce) and kernel
mode (via the Linux
kernel crypto API)

qfintverify Ib7105a495492199542fa43cdfbc8125060e7df6c

Ia286e86508c9258518f8b8d4f2d9dc0fa961c28d

Ibf1db89060b944150d1a916645bfc886c80c6c5b

Performs integrity checks

qdrbg_module.ko
Id590f0e8bdbfba943595418249a35bac97513864

Random number
generator

In addition to the configurations tested by the laboratory, vendor affirmed testing was performed
using the same cryptographic hardware and software (e.g., the QTI Cryptographic Module on
Crypto 5 Core v5.3.0 with the Software version 5.f2-64 and Android 5.0) on the Qualcomm
Snapdragon 808 processor.

https://review-android.quicinc.com/#q,Id590f0e8bdbfba943595418249a35bac97513864,n,z
https://review-android.quicinc.com/#q,Ib7105a495492199542fa43cdfbc8125060e7df6c,n,z
https://review-android.quicinc.com/#q,Ia286e86508c9258518f8b8d4f2d9dc0fa961c28d,n,z
https://review-android.quicinc.com/#q,Ibf1db89060b944150d1a916645bfc886c80c6c5b,n,z
https://review-android.quicinc.com/#q,Id590f0e8bdbfba943595418249a35bac97513864,n,z

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 9 of 33

2.2.Description of Approved modes

The CM supports a FIPS approved mode and a non-approved mode. All CSPs are kept separate
between the two modes. The services available in each mode are specified in table 2-1. When a
request for a non-approved mode service is received, the CM switches to non-approved mode,
services the request, and immediately switches back to the approved mode.

The CM is placed into the approved mode by performing power up self-tests consisting of a KAT
self-test for each algorithm in the approved list and an integrity test. If either test fails, none of the
cryptographic functions are available.

Table 2-1 provides a summary of all security functions (both FIPS compliant and FIPS non-
compliant). Table 4-2, 4-3 and table 4-4 illustrate the role and corresponding services available to
the Crypto officer and User.

2.3.Cryptographic Module Boundary

The physical boundary of the module is the physical boundary of the device that contains the
module. Consequently, the embodiment of the module is a Multi-chip standalone cryptographic
module.
In the following diagram, the bidirectional arrows depict the flow of the status, control and data.
The logical boundary of the cryptographic module (in blue) overlaps both user space and kernel
space.

Figure 2: Cryptographic Boundary

The operations within the logical security boundary (the blue dotted region) use the ciphers from
the hardware, Crypto Core (see Figure 3) that is included in the logical boundary.

2.3.1.Hardware Block Diagram

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 10 of 33

The bidirectional arrows depict the flow of the status, control and data. Software drivers pass the
parameters to the hardware and receive the results from the hardware.

The CSPs, such as the encryption key, are given to the APIs. The hardware components which are
not part of the crypto core pass the Critical Security Parameter (CSP) to crypto core. Therefore,
they act as “pipes” without interaction with the CSPs.

Figure 3: Hardware Block Diagram

 : Power in

 : Command/ data/ CSP in

 : Data/ status/ CSP out

The CSPs are passed via memory and processed by the Cryptographic Module. All parameters to
the hardware are provided via memory from qce50.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 11 of 33

Figure 4: Qualcomm Snapdragon 810 processor

Front view Back view

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 12 of 33

3.Cryptographic Module Ports and Interfaces

Table 3-1 Ports and interfaces

FIPS Interface Ports

Data Input API input parameters

Data Output API output parameters

Control Input API function calls

Status Output API return codes, kernel log messages

Power Input Physical power connector

As indicated in Table 3-1, all status ports and control ports are directed through the interface of
the module’s logical boundary, which is the software APIs of the module. .

The User or Crypto Officer interacts with the CM in two distinct ways:

1. Powering on the CM
2. The application services (API’s) invoked by users

For the application services, the logical interfaces of the module are the C language Kernel
Programming Interfaces (KPIs). In detail these interfaces are the following:

 Data input and data output are provided in the variables passed in the KPI and callable
service invocations, generally through caller-supplied buffers.

 Control inputs which control the mode of the module are provided through dedicated
parameters.

 Status output is provided in return codes and through messages. Documentation for each
KPI lists possible return codes. A complete list of all return codes returned by the C
language KPIs within the module is provided in the header files and the KPI documentation.
Messages are documented also in the KPI documentation. Return codes will be in the
header files.

Once the kernel initializes the cryptographic module and the self-tests complete successfully, all
cryptographic functions are made available to kernel services and user space. If any of the
modules KAT fails, the module self-test causes the system to panic (see Section 9.1 for more
details). To recover from a KAT failure a reboot of the kernel is required to reset the failure status.
If the integrity tests fail the module causes the kernel to panic, thereby shutting down the kernel
and the CM. The only way to recover from an integrity test failure is to reinstall the software and
reboot the kernel.

Caller-induced or internal errors do not reveal any sensitive material to callers. Cryptographic
bypass capability is not supported by the module. The CM ensures that there is no means to
obtain data from the cryptographic module by performing key zeroization. There is no means to
obtain sensitive information from the cryptographic module.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 13 of 33

4.Roles, Services and Authentication

4.1.Roles

The module supports two roles: a Crypto Officer role and a User role. The module does not support
user identification or authentication that would allow the module to distinguish between the two
supported roles.

The Crypto Officer role is a purely administrative role that does not involve the use of
cryptographic services. The role is not explicitly authenticated but assumed implicitly on
implementation of the module’s installation and initialization.

The User role has access to all of the module’s services. The role is not explicitly authenticated,
but assumed implicitly on access of any of the non-Crypto Officer services. An operator is implicitly
in the User or Crypto Officer role based upon the service chosen. If any of the User-specific
services are called, then the operator is in the User role; otherwise the operator is in the Crypto
Officer role.

The customer who configures and installs the CM is considered to be a Crypto Officer.
Additionally, a user powering up and initializing the device is assuming the Crypto Officer role.
There is no enforced separation between the Crypto Officer and the User roles. As stated
previously, the User or Crypto Officer role is based on the service or operation performed.

Table 4-1 Roles

Role Services (see Table 4-2)
User Utilization of services of the module

Crypto Officer Installation and initialization of the module.

4.2.Services

The crypto module does not provide a bypass capability through which some cryptographic
operations are not performed or where certain controls implemented during normal operation are
not enforced.

Services and sub-services are split between the software and hardware portions of the software
hybrid module as follows:

 DRBG: software implementation using the cipher primitives from hardware

 all other ciphers: hardware where the software driver is used for proper alignment of data
and invocation of hardware

 selftest / integrity test: software

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 14 of 33

The following tables (Table 4-2 and Table 4-3) illustrate the role and corresponding services of the
Crypto Officer and User. Additionally, the Component column indicates the component that
implements the service with ‘H’ indicating hardware and ‘S’ indicating software.

Table 4-2 Approved Services

Service Roles CSP

C
o
m

p
o
n

e
n

t Modes Is FIPS
Approved?
If Yes Cert

Access (Read,
Write, Execute)

Standard

U
s
e
r

C
O

Symmetric Algorithms

AES
encryption
and
decryption

✓ AES
Symmetric
key (128,
256 bit)

H

CBC, ECB,
CTR, XTS,
CCM (only
available on
the qcrypto
interface
(kernel-

kernel))

Cert. 3164 Read/Write

FIPS 197
SP 800-38
[A,C,E]

Triple-DES

✓ Triple DES

Symmetric
key (168
bits)

H

CBC, ECB Cert. 1802 Read/Write

FIPS 46-3
SP 800-
38A

Hash Functions

SHA-1 ✓ None
H

N/A Cert. 2617 Read FIPS 180-
4

SHA-256

✓ None
H

N/A Cert. 2617 Read FIPS 180-
4

Message Authentication Codes (MACs)

HMAC-SHA1 ✓ HMAC-SHA1
key (key
length at
least 112
bits)

H

N/A Cert. 1992 Write FIPS 198-
1

HMAC-SHA-
256

✓ HMAC-
SHA256 key
with a
length of at
least 112
bits

H

N/A Cert. 1992 Write FIPS 198-
1

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 15 of 33

Service Roles CSP

C
o
m

p
o
n

e
n

t Modes Is FIPS
Approved?
If Yes Cert

Access (Read,
Write, Execute)

Standard

U
s
e
r

C
O

AES-CMAC ✓ AES
Symmetric
key (128,
256 bit)

H

CMAC (only
available on
the qcedev
interface
(user-kernel))

Cert. 3164 Write SP 800-
38B

Random Number Generation

DRBG 800-
90A

✓ Seed, Nonce

S

CTR DRBG
with AES 128
core and
derivation
function

Cert. 655 Read SP 800-
90A

Miscellaneous

Module
installation

 ✓ None
N/A

N/A N/A Read/Write N/A

Self Tests ✓ HMAC-SHA-
256 key for
integrity test

S
N/A Cert. 1992 Read/Execute N/A

Zeroization ✓ All CSPs S N/A N/A Read/Write/Execute N/A

Query
status

✓ None
S

N/A N/A Read N/A

Table 4-3 Non-Approved Services

Service Roles CSP Modes Access
(Read,
Write,
Execute)

Standard

U
s
e
r

C
O

Symmetric Algorithms

DES ✓ DES Symmetric key
(56 bits)

CBC, ECB Read/Write n/a

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 16 of 33

Service Roles CSP Modes Access
(Read,
Write,
Execute)

Standard

U
s
e
r

C
O

AEAD-SHA-1
AES

3

✓ AES Symmetric key
(128 bits), HMAC-
SHA1 key (key
length at least 112
bits)

CBC, CTR Read/Write n/a

AEAD-SHA-1
DES

3

✓ DES Symmetric key
(56 bits), HMAC-
SHA1 key (key
length at least 112
bits)

CBC Read/Write n/a

AEAD-SHA-1
Triple-DES

3

✓ Triple-DES
Symmetric key
(168 bits), HMAC-
SHA1 key (key
length at least 112
bits)

CBC Read/Write n/a

Kasumi ✓ Symmetric key
(128 bits)

n/a Read/Write n/a

Snow-3g ✓ Symmetric key
(128, 256 bits)

n/a Read/Write n/a

Random Number Generation

HW RNG ✓ Entropy source,
seed

Combination of
True RNG and
HASH-DRBG

Read

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 17 of 33

5.Physical Security

5.1.Type

The QTI Cryptographic Module is a software-hybrid module that operates on a multi-chip
standalone platform which conforms to the Level 1 requirements for physical security. The
hardware portion of the cryptographic module is a production grade component. The
cryptographic module must be used in a commercial off the shelf (COTS) mobile device. The
mobile device shall be comprised of production grade components with standard passivation (a
sealing coat applied over the chip circuitry to protect it against environmental and other physical
damage) and a production grade enclosure that completely surrounds the cryptographic module.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 18 of 33

6.Operational Environment

6.1.Applicability

The operating system shall be restricted to a single operator mode of operation.
The procurement, build and configuring procedure are controlled. The module is installed into a
commercial off-the-shelf (COTS) mobile device by the customer. Therefore the operational
environment is considered non-modifiable.

6.2.Debugger

The use of a kernel debugger as well as a JTAG interface for debugging is prohibited.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 19 of 33

7.Cryptographic Key Management

7.1.Random Number Generation

The random number generation uses a hardware/software hybrid solution. Hardware is used to
collect random bits as the entropy seed for the software module to generate FIPS140-2 compliant
random numbers.

The software deterministic random bits generator (DRBG) gets entropy and nonce from the
hardware RNG. The software DRBG used to generate pseudo random numbers is an SP 800-90A
compliant CTR DRBG with an AES 128 core using a derivation function without prediction
resistance. It does not process a personalization string or an additional input string. The
implementation performs a continuous self-test, a health check, and a poweron self-test.

The DRBG accepts 128 bits of entropy input and 64 bits of nonce as the seed from the underlying
HW RNG. A re-seed process is applied to the DRBG, after it generates 2^31 blocks of data.

When the DRBG is instantiated, it runs a self-test with a set of test vectors, and also runs a health
check test to verify that the instantiation function and generation function is able to handle any
incorrect parameter inputs, such as the input data length being a negative number, etc. The DRBG
implements a continuous self-test verifying the random number generation. The output of the
hardware RNG is subject to a continuous self-test.

The DRBG self-test and run-time test performs the following steps:

(1) Instantiate DRBG.
(2) Reseed.
(3) Generate random bits (do not output).
(4) Generate random bits (as outputs).
(5) Un-Instantiate.

The self-test compares the output bits with pre-set expected output bits, from pre-set test vectors.
In the run-time test, the output bits will be output to client for further verification by the client.

7.2.Key/CSP Generation Management

The module does not perform key generation for any of its approved algorithms. However, a user
may use the modules DRBG to obtain key material to pass into the module. Keys are passed in
from clients via algorithm APIs.

There is no manual seeding of the DRBG functions. For additional information about the DRBG
refer to Section 7.1.

The CM does not provide any asymmetrical algorithms. Manual key entry or key output
capabilities are not provided. All CSPs can only be exchanged between the CM and the calling
application or kernel code through the appropriate API calls which all occur within the physical
boundary of the device and therefore may be passed from the application to the module in the
clear.

Application and kernel code pass references to keys and similar sensitive information to the CM
using API calls. It is the applications responsibility to destroy this information using FIPS Pub 140-2
compliant procedures. The CM itself does not destroy externally stored keys and secrets since it
does not own these CSPs. Keys are not stored within the CM; however intermediate key material

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 20 of 33

may reside in memory as clear data. All intermediate key storage and other CSPs stored or
created by the CM are zeroized when processing completes.

7.3.Zeroization

Services can be called either by the kernel or the application running in the user space. When the
service is called by the kernel, the kernel must initially obtain a cipher handle in which all data
including CSPs are located. When complete, the kernel calls the Zeroization service which
overwrites all CSPs with zeros before it releases the handle.

When the service is called by the application running in the user mode, the IOCTL switches the
control from user mode to the kernel mode and the zeroization is handled by the kernel upon the
completion of the service in the same way as described above. After zeroization, the IOCTL
returns the control to the calling application in user mode.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 21 of 33

8.Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)

The CM was tested for EMI/EMC and found to be compliant with FCC Part 15 subpart B (Household
and Medical devices).

Lab Name:
UL Verification Services Inc.
47173 Benica Street
Freemont, CA 94538 U.S.A
NVLAP Lab Code 200065-0

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 22 of 33

9.Powerup Tests

Powerup self-tests consist of software integrity tests and known-answer tests of algorithm
implementations. The module integrity test is automatically performed during loading. If any of
these tests fail, the module will terminate the loading process. The module cannot be used in this
state. To recover from the error state, re-initialization is possible by doing a reboot to set it to
power on state.

Powerup self-tests are performed when the CM is initialized. Initialization is invoked by an
application that is human user independent. All self-tests are performed as a single atomic action
that has two possible results: success or failure. If the result is success, the CM becomes
operational, if it is failure, the CM enters an error state and cryptographic functions cannot be
performed.

FIPS 140-2 explicitly allows that the on-demand test can be fulfilled with a power cycle of the
module. Hence, a power cycle and its associated poweron self-test is the methodology used to
perform the "on-demand" tests.

The KAT self-tests are performed during loading by the probe functions which are part of the
module init phase in the qcrypto module. If any of the tests fail, the module will cause the system
to panic and all functionality to stop.

The DRBG KAT is performed after the successful completion of the KAT self-test If the test fails, the
module will cause the system to panic shutting down both the kernel and the CM.

The integrity test is performed after successful completion of the DRBG KAT by a user-space app
which is executed in the Linux kernel initialization phase. The qfintverify performs integrity tests
on the qcrypto and qdrbg modules and also on itself. All cryptographic requests other than those
made by the integrity test module are blocked during the integrity test. The integrity test uses
cryptographic functions in the CM to perform the integrity test. If the integrity test of any
component fails, the CM will cause the system to panic, shutting down the kernel and therefore
the CM. . If the test passes the CM will unblock the cryptographic requests. This causes the CM to
enter FIPS operational mode.

Figure 5 shows the CM powerup test flow.

Figure 5 Crypto module finite state powerup tests flow

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 23 of 33

9.1.Self-tests

The CM implements self-tests to ensure proper functioning of the module Implemented self-tests
include powerup self-tests and conditional self-tests. A continuous random number generator test
is implemented as a conditional self-test. The powerup self-tests include known answer tests (KAT)
and integrity tests of the CM binaries.

There are four values for a global flag used to drive the powerup self-tests:

 1 - Known answer tests have succeeded
 2 - Integrity tests have succeeded

 3 - All tests have succeeded and FIPS 140-2 mode is enabled
 255 - This is the initial value and each successful stage of the poweron self-tests will

change it to one of the previous values. If the integrity test fails the flag is set to this value
that causes all cryptographic functions to be unavailable.

The flag value is initialized to 255 which will cause all requests to the CM to be blocked. The
powerup self-tests proceed as follows:

 The qcrypto module runs its KATs. If successful then the flag value is set to “1” and
success is logged to dmesg. If the KATs fail the code panics the kernel causing the kernel
and therefore the entire cryptographic module to shut down.

 The DRBG KAT is performed. If successful the flag value is set to “2” and a success is
logged to dmesg. If the KAT fails the code panics the kernel causing the kernel and
therefore the entire cryptographic module to shut down.

 The qfinteverify binary performs an integrity test on itself and the kernel image that verifies
the integrity of the CM binaries. If unsuccessful, the code panics the kernel causing the
kernel and therefore the entire cryptographic module to shut down. If successful, the flag
value is set to 3 which causing the CM to no longer block and the CM enters its FIPS 140-2
operational state and the success is logged to dmesg.

9.2.Cryptographic algorithm tests (known answer tests)

Table 9-1 Powerup Tests

Algorithm Test

AES encryption KAT

AES decryption KAT

Triple-DES encryption KAT

Triple-DES decryption KAT

SHA1 KAT

SHA256 KAT

HMAC-SHA-1 KAT

HMAC-SHA-256 KAT

AES-CMAC KAT

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 24 of 33

Algorithm Test

DRBG KAT

9.3.Integrity Test Summary

1. During the build process The HMAC SHA-256 of the (qcrypto_module.ko and
qdrbg_module.ko images and the HMAC SHA-256 of the integrity application (qfintverify
executable) are created and stored in relevant files. These files are made available in a
read only partition on the target which are:

 /sbin/qcrypto_module.hmac

 /sbin/qdrbg_module.hmac
 /sbin/qfintverify.hmac

a. The key that is required to create the HMAC SHA-256 signatures is hard-coded in

the Makefile of the integrity test project. The HMACs are generated during build
compilation time. The key is also hard coded in the program qfintverify.c to allow
generation of the HMAC SHA-256 values during bootup.

2. On the target: The user-space application qfintverify is run as a service when the device

boots up.
The integrity test has three parts:

 qcrypto_module.ko verification
a. The program reads raw bytes from /sbin/qcrypto_module.ko
b. The qcrypto_module.ko is read and stored in a temporary buffer
c. This temporary buffer is sent to qcyrpto through the standard Linux kernel crypto

APIand the HMAC SHA-256 signature of the buffer is created using QCOM hardware
d. In qfinteverify, the created HMAC digest is compared to the HMAC digest that is

stored in /sbin/qcrypto_module.hmac.
e. If the HMAC digests match, the test will proceed to perform the qdrbg_module.ko

verification otherwise it enters the error state.

ii. qdrbg_module.ko verification
a. The program reads raw bytes from /sbin/qdrbg_module.ko.
b. The qdrbg_module.ko data are stored in a temporary buffer.
c. This temporary buffer is sent to qdrbg through standard Linux kernel crypto API and

the HMAC SHA-256 signature of the buffer is created using QCOM hardware.
d. In qfinteverify, the created HMAC digest is compared to the HMAC digest that is

stored in qdrbg_module.hmac.
e. If the HMAC digests match, the test will proceed to perform the integrity application

verification otherwise it enters the error state.

 self-integrity kernel module verification
a. The module reads raw bytes from the application /sbin/qfintverify which is stored in

a temporary buffer
b. The temporary buffer is sent to qcedev via an IOCTL and the HMAC SHA-256

signature of the buffer is created using hardware.
c. In qfinteverify, the created HMAC is compared with the HMAC that is stored in

/sbin/qfinteverify.hmac.
d. If this portion of the integrity test passed, the CM proceeds to perform the DRBG KAT

tests, otherwise it enters the error state.

3. The integrity test application (qfintverify) is run once every bootup .

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 25 of 33

If the HMACs match, the integrity tests are considered a success and the DRBG KAT is invoked. If
any part of the integrity test fails, the code panics the kernel causing the kernel and therefore the
cryptographic module to shut down.. Both the CM binary integrity verification and the self
integrity module test have to pass in order for the whole integrity test to succeed.

9.4.Conditional Tests

Each time entropy is requested from the hardware RNG, a 256 bit block is returned. The block
from the first request for entropy is not used but rather stored for comparison purposes. From
that point when a request for entropy is made, the 256 bit block returned is compared to the
previous 256 bit block that was stored. If the comparison indicates the blocks are equal the test
fails, and the CM goes into a panic mode forcing the kernel and the CM to shut down.

Similarly, when a request is made for random data from the DRBG, a 128 bit block is generated.
The first request is not returned but stored for comparison purposes. When additional requests
are made, the current 128 bit block is compared to the stored 128 bit block. If the comparison
shows that the blocks are the same, the test fails, the CM causes the system to panic and all
functionality stops. Otherwise, when then blocks are different, the conditional test passes and the
DRBG will continue to output random bits to its client.

The conditional test also runs during device bootup and the DRBG driver initialization phase. After
successful completion of the DRBG continuous test, the FIPS global status flag is set to ”3” and the
build is in FIPS 140 -2 mode.

Table 9-2 Conditional tests

Algorithm Test

DRBG Continuous test

HW RNG (non-FIPS compliant) Continuous test

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 26 of 33

10.Design Assurance

10.1.Configuration Management

10.1.1.Software

GIT is used for software (Android) source control and configuration management. GIT is an open
source distributed revision control and SCM system. Every GIT working directory is a repository
with complete history and full version tracking capabilities, not dependent on network access or a
central server. The software (Android) code is in open source domain and is maintained by the
Code Aurora Forum (CAF).

10.1.2.Hardware

ClearCase, a version control system from IBM/Rational, is used to manage the revision control of
the hardware code (Verilog code) and hardware documentation. The ClearCase version control
system provides version control, workspace management, parallel development support, and build
auditing. The Verilog code is maintained within the QTI ClearCase database.

10.2.Delivery and Operation

The cryptographic module is delivered via GIT open source. When customers require urgent
delivery of the code, a process known as the software bundle archive (SBA) can be utilized.

The following compilation flags must be defined (set to y) in order to generate FIPS compliant
code:

1. The FIPS_ENABLE flag, in kernel/drivers/crypto/Kconfig

If the above mentioned flags are not defined, the generated code is not FIPS compliant.

10.3.Guidance

10.3.1.Crypto Officer Guidance

To enable the QTI Cryptographic Module into the system, at the kernel build process, the Crypto
Officer must ensure that the following compilation flag is defined (set to true):

 FIPS_ENABLE is defined in the kernel/drivers/crypto/Kconfig file. This ensures the
build process will include all FIPS related binaries.

Then in the build process, the two kernel modules (qcrypto_module.ko and qdrbg_module.ko),
integrity test app (qfinteverify) and their HMAC files (qcrypto_module.hmac, qdrbg_module.hmac,
and qfinteverify.hmac) will be generated and installed in the boot.img.

In the bootup phase, the Crypto Officer can use “insmod” command in an Android init script file to
load the 2 kernel modules sequentially in Android kernel init phase:

1) insmod /sbin/qcrypto_module.ko

2) insmod /sbin/qdrbg_module.ko
And then use “start” command to start the integrity test program as a service:

3) start qfintverify

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 27 of 33

The order of these “insmod” commands must be preserved, and they must be executed before
any mount operations on disk partitions.

After these kernel modules are loaded, the poweron KAT self-tests and integrity tests will start to
execute as described in section 9.

The Crypto Officer shall ensure that the User guidance (Section 11) is available to cryptographic
module users.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 28 of 33

11. User Guidance

11.1.Application Programming Interfaces

There are two interfaces into the CM, one from the kernel space and one from the user space.

11.2.User Space APIs

Status
The status of the cryptographic module is available via the following IOCTL: (Include File:
linux/qcedev.h)

QCEDEV_IOCTL_QUERY_FIPS_STATUS_IOR(QCEDEV_IOC_MAGIC, 11, fips_status)

The returned value in fips_status is mapped by enum fips_status will present the current FIPS
status as one of the following:

FIPS140_STATUS_NA = 0 (Non FIPS build)

FIPS140_STATUS_PASS = 3 (All tests passed and crypto engine is available)

FIPS140_STATUS_FAIL = 0xFF (One of the tests failed, crypto engine is unavailable

Random Numbers
To obtain a random number from the DRBG read data from the hardware random number device
file /dev/hw_random.

The following example is how the UNIX dd command could be used to read 32000 bytes of random
data from the DRBG:

 dd if=/dev/hw_random of=file bs=32 count=1000

Cryptographic Functions
The following cryptographic functions are available via an IOCTL interface:

 AES-128 (ECB, CBC, CTR, and XTS mode)
 AES-256 (ECB, CBC CTR, and XTS mode)
 AES CMAC

 Triple-DES (CBC, ECB)
 SHA1/SHA256

 SHA1/SHA256 HMAC

All requests for service are synchronous. The invoking process will be put to sleep, waiting for
completion of the request.

Source and destination buffers must point to the same location. Use of different locations for the
source and destination buffers is not supported. For performance reasons, buffers must use
memory allocated using PMEM thereby allowing the memory to be shared between user space and
the kernel. Additionally, when in AES CTR mode and issuing either an encryption or decryption
request, a non-zero byte offset is not supported.

Prior to invoking the ioctl, the application is required to open a file descriptor to the qcedev device
as in the following example:

fd = open(“/dev/qce”, O_RDWR);

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 29 of 33

The user may then call the following ioctls with the file descriptor as the first parameter and a
pointer to one of the following data structures (as appropriate) for the second parameter:

qcedev_cipher_op_req – for cipher operations

qcedev_sha_op_req – for hash/HMAC functionality

The following Cipher IOCTLs are available to the user space applications:

 QCEDEV_IOCTL_ENC_REQ – for encrypting data
 QCEDEV_IOCTL_DEC_REQ – for decrypting data

The second parameter is a pointer to the qcedev_cipher_op_req structure defined in qcedev.h:

The following hashing/HMAC IOCTLs are available to user space applications:

 QCEDEV_IOCTL_SHA_INIT_REQ – initialize a hash/HMAC request
 QCEDEV_IOCTL_SHA_UPDATE_REQ – for updating hash/HMAC
 QCEDEV_IOCTL_SHA_FINAL_REQ – for ending the hash/HMAC request

 QCEDEV_IOCTL_GET_SHA_REQ – retrieve the hash/HMAC for a data packet of a known size
 QCEDEV_IOCTL_GET_CMAC_REQ – for retrieving MAC (using the AES CMAC algorithm) for

data packet of a known size

The second parameter to the IOCTL call is a pointer to the qcedev_sha_op_req structure defined in
qcedev.h:

The IOCTLs and the associated data request structures are defined in:

kernel/include/uapi/linux/qcedev.h

It is the callers’ responsibility to zeroize the ‘req’ data structure upon completion of the cipher
operation.

11.3.Kernel Space APIs

In addition to the information presented below for the kernel space APIs, the Linux kernel now
provides official documentation of the kernel crypto API. This documentation is available at:

https://www.kernel.org/doc/htmldocs/crypto-API/index.html

The following concepts are presented to simplify describing the kernel space APIs.

Page Vectors:
A page is the fundamental unit of memory used by the kernel. Consider data that resides on a
specific page, offset from the start of the page by a specific amount and of a particular length.
The location of this data can be expressed as a page-based tuple or page vector:
{page, offset, length}.

Additionally, an existing kernel data structure called a scatterlist is used to operate on arrays of
discontiguous pages.

Transforms:
Transforms are objects that instantiate algorithms manage internal state and handle common
implementation logic. A set of API transform wrappers are provided in the kernel to simplify
transform use and allow the properties of the transform’s underlying algorithm to be queried.

11.3.1.Block Cipher Algorithms

https://www.kernel.org/doc/htmldocs/crypto-API/index.html

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 30 of 33

The cryptographic block ciphers provided by the CM to kernel space are only available
asynchronously and include:

 AES 128 (CBC, ECB, CTR, CCM and XTS mode)
 AES 256 (CBC, ECB, CTR, CCM and XTS mode)

 Triple-DES (CBC, ECB)

The following pseudo-code demonstrates a typical calling sequence to the kernel to utilize the
block cipher APIs from kernel space asynchronously:

tfm = crypto_alloc_ablkcipher(“algorithm4”, type, mask);

req = ablkcipher_request_alloc(tfm, gfp-flag);

ablkcipher_request_set_callback(req, transform-flag,

 _callback_function_ptr, &result);

crypto_ablkcipher_setkey(tfm, key, keylength);

crypto_ablkcipher_request_set_crypt(req, src, dest, numbytes, iv);

crypto_ablkcipher_encrypt(req);

crypto_free_ablkcipher(tfm);

ablkcipher_request_free(req);

11.3.2.Hash/HMAC Algorithms

The cryptographic block ciphers provided by the CM to kernel space are only available
asynchronously and include:
SHA-1/SHA-256
HMAC-SHA-1/HMAC-SHA-256

The following pseudo-code demonstrates a typical calling sequence to the kernel to utilize the
hash/HMAC APIs from kernel space asynchronously:

tfm = crypto_alloc_ahash(“algorithm”, type, mask);
req = ahash_request_alloc(tfm, gfp-flag);
ahash_request_set_callback(req, transform-flag,
 _callback_function_ptr, &result);
crypto_ahash_setkey(tfm, key, keylength);
crypto_ahash_request_set_crypt(req, src, dest, numbytes);
crypto_ahash_digest(req);
crypto_free_ahash(tfm);
ahash_request_free(req);

The functions and the associated data structures are defined in:
 linux/opensource/kernel/include/linux/crypto.h.

11.3.3.Status

The exported variable "g_fips140_status" (that can be read by any kernel module) is mapped by
enum fips_status will present the current FIPS status as one of the following:
FIPS140_STATUS_NA = 0 (Non FIPS build)

4
 Also produces a Message Authentication Code

iver_name for the algorithm specified in table 1 in section 2.1.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 31 of 33

FIPS140_STATUS_PASS = 3 (All tests passed and the crypto engine is available)
FIPS140_STATUS_FAIL = 0xFF (One of the tests failed, and the crypto engine is unavailable)

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 32 of 33

12. Mitigation of Other Attacks

The Mitigation of Other Attacks security section of FIPS 140-2 is not applicable to the QTI
Cryptographic Module.

QTI Cryptographic Module on Crypto 5 Core FIPS 140-2 Security Policy

© 2015 Qualcomm Technologies, Inc.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 33 of 33

13.Terms and Abbreviations

AES Advanced Encryption Specification

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CE Cryptographic Engine

CCM Counter with Cipher Block Chaining-Message
Authentication Code

CM Cryptographic Module

CMT Cryptographic Module Testing

CMVP Cryptographic Module Validation Program

COTS Commercial Off The Shelf

CO Crypto Officer

CSP Critical Security Parameter

DES Data Encryption Standard

FIPS Federal Information Processing Standards Publication

FSM Finite State Model

HMAC Hash Message Authentication Code

IOCTL Input Output Control

KAT Known Answer Test

MAC Message Authentication Code

NIST National Institute of Science and Technology

NVLAP National Voluntary Laboratory Accreditation Program

O/S Operating System

QTI Qualcomm Technologies, Inc.

RNG Random Number Generator

SBA Software Bundle Archive

SCM Source Code Management

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SLA Service Level Agreement

SOF Strength of Function

TDES Triple DES

TFM Transform

UI User Interface

